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Abstract

The improvement of sensitivity expressed in a limit on o x BR for some
process is shown to scale faster than the increase in integrated luminosity.
This demonstration is done under the assumptions that there are that no
events and no background observed, and that the systematic uncertainty in
the background has a statistical component that scales with simple Gaussian
statistics and a systematic component that is independent of the integrated
luminosity.
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1 Introduction

In this computation we show how the limit on a signal depends on the statistcal
uncertainty and on the systematic uncertainty which has a component that
depends on statistics plus one that is independent of statistics.

First, we show that a limit on o x BR for some process improves with a factor
of f integrated luminosity as:

_ 0 X BRy ( ABy 1 ASO)
o x BR 7 1 N, T + N, (1)
where:
o x BR§ = statistical poisson limit assuming no events observed
AB, = statistical uncertainty in background
AS, = systematic uncertainty in background
Ny = Number of signal events

For simplicity we assume that no signal nor background events are observed.
Next, we consider the effective gain in the limit with integrated luminosity

defined as:
o x BR/ B 1

o X BR() N F
where f'is the apparent gain in the integrated luminosity and is show to be
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We show then that f’ > f and has the limit f' = f(1 + a) for large statistical
gain.

In order to demonstrate this, we consider an example of setting a 90% CL in
360pb ! of integrated luminosity where the background is 0 + 3 events with a
theoretical uncertainty of 0 4 1 events. The background is assumed to have been
measured by some statistically limited method. Given this, we define:

o xBR) = 21/360pb~! The 90% CL limit without background,
no events observed
= 58fb has this numerical value for 360 pb-1
ABy/N, = 3/21=143 assume 0+ 3 background events measured
ASy/Ns = 1/21=048 assume systematic uncerainty of one event
The scaling law is:
5.8 1.43
o x BR 7 (1.48—1— \/T)fb (5)

In the sections that follow, we derive these formulas by first considering the
limit in the case of no background or systematic error, then with background that
is known with some statistical accuracy, and finally with a systematic uncertainty
included. The last section examines the effective gain in the limit with increased
integrated luminosity.

2 Computation of the perfect limit

Let us express the limits in units of some standard model cross section times

branching ratio:

BR,.
R:M (6)

o X BRSM

If we consider the example of the Higgs search in the mode H—-W* W~, our
sensitivity is a factor 12 away from the Standard Model, so R = 12. If there
is no background and no error on this background, then this limit scales with
the luminosity so that if we get a factor of three more luminosity, then we have
R=12/3=4.

However, if there is no measured background, we expect that we would have
systematic uncertainty in the background that depends on the statistical test we
have on the background. We also may have a background systematic uncertainty
that does not depend on statistics but on a theoretical uncertainty that does not
improve with more data. We now turn to considering the limits first without any
uncertainties and then with the uncertainties included.

In the perfect situation, with no uncertainties, if we see no events, we compute
the limit by assuming 2.1 events for a 90% CL.



Suppose integrated luminosity, L™ = 360pb~' = L{". Then the number of
events observed is:

N = (0 x BR) L™ (7)
ocxBR = N/L'™ (8)
= N/LY" 9)

= 2.1/360pb™" (10)

= 5.8 x1073pb (11)

= 5.8fb (12)

= o x BR), (13)

where we use the subscript to indicate initial limit for the starting integrated
luminosity, Li" and the superscript to indicate that this is in the case of no
background and no systematic uncertainty.

If we double the luminosity

o xBR = o xBR (14)
o2Lp
1 N
= - — 1
2 Litt (16)
1
= 50X BR) (17)
= 5.8fb/2 (18)
= 2.9fb (19)
We see then that .
o x BR = 2% BRo (20)
2
or 1
o x BR' = 7 (o x BRY) (21)

where f is the luminosity factor between the old and new limit.

3 Computation of the Limit with Statistical
Background Error

If we see no events but our background estimate is 0 &= 3 events, then our limit
should be computed on a basis of 2.1 + 3 = 5.1 events. We lose about a factor



of 2 over the perfect knowledge described in the previous section. Let us define:

By =0+ 3and ABy = 3. Then

o xBR =

or

o X BR
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T
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W
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ﬁLént
5.1

= —5.8fb
2.1

= 2.4 x5.8tb
14.1fb
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5.8fb + 8.3fb
14.1fb.
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If we double the statistics, then AB = ABy/v/2 = AB,/+/f where f = 2 is the
factor of statistics gained. In this case,

o X BR

2.1+ AB
Lint
2.1+ &k
Y
Ly
21, ABy
fLyt - VL
o xBRy 0 x BRJ*
f i
58 8.3

- + -
2 2V/2
2.9fb + 2.9fb
5.8fh.
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4 Computation Based on Statistical Background and
Constant Systematic Error

Now let’s add a systematic uncertainty that is independent of luminosity.
Suppose we have a systematic uncertainty of 1 event. (One can argue that we
should take this as £0.5 evts, but let’s take the error as 1 event.)

N  AB, AS
oxBRy = Tmi+ Lgnf - LB”S (41)

2.1 3 1

= = : : 42
L%)nt + L%)nt + Lf)"t ( )
= o x BRY 40 x BRJ* + o x BRy¥* (43)
o x BRZ* 5 x BR3Y®
= BRY (1 0 0 44
7 O<+a><BR8+a><BR8> 4
AB, AS,
_ oxBR8<1+ N8+Ns) (45)

where we define ABj as the error on the background, N, the number of signal
events and AS, the systematic error.
If we increase the integrated luminosity by a factor of £, this becomes:

o xBRY o xBRJ* o x BRSY

oxBR = + + 46
7 i 7 4o

0 Bkg Sys
_ 9 xBRg 1 axBROO L_i_oxBROO (47)

f o xBRy V[ o xBRg

o x BRy ( AB, 1 ASO>

= —1+=2—+=22 48
f Ns \/f NS ( )

Let’s check this expression with an example. We start out with:

2.1 3 1
BRy = (soo+as+a) 49
7B 360 360 * 360/ " )
= (5.8+83+238)fb (50)
= 16.9fb. (61)
If we double the integrated luminosity, then we have
x BR 21 + % + ! fb (52)
o =
2x360 2x360 2x 360

= (29+29+14)fb (53)
= 7.3fh. (54)



With now compute the quantites needed for the formula in Eqn. 48

o x BR) = 5.8fb (55)
AB, 3
N, ~ 21 (56)
= 1.43 (57)
ASy, 1
N, = a1 (58)
= 048 (59)
(60)
so that
5.8 1.43
cxBR = —([1+— +048 61
P (1 7 ou oy
5.8 1.43
= — 148+ — |, (62)
7 (e )
which, for f = 2is
oxBR = 2.9fb(1.48+1.01) (63)
= 2.9fb x 2.49 (64)
= 7.3tb (65)

5 Computation of the effective gain in luminosity

Now consider that we are interested in comparing how our o x BR sensitivity has
improved with luminosity. We wish to compute

o X BRO
fl
where the “/” indicates quantities after more luminosity and “;” indicates

sensitivities with the current integrated luminosity. We can solve for 1/ f":

o x BR' = (66)

4

1 x BR’
- gxon (67)
f" o xBRy
We then use Eqn. 48 to compute o x BR/, Eqn. 45 to compute o x BRy and
write the ratio:

o xBR' _ [(@8) (HAN]?%*ANT)] -
U )
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where, as described above, AB;, N; and AS, are the number of background,
signal assumed and systematic. These take on the values AB; = 3, N, = 2.1 and
ASy = 1 for the example here.

If we let
ABy
N,
14 &2 @D
AB,
= — 72
N. T A5y (72)
we have
/ 14+ 2
oxBR _ 177 7
o x BR? f 1+a
1 1
= —7a (74)
f 1+ﬁ
1
Therefore 14
a
f =t 76)
NG

and hence f' > f.

Let’s work out the numbers, first by considering what happened after we
doubled the luminosity.

In that case we still assume we have no events and take the Poisson 90% CL of
2.1 events. We take 3/ V2 events for background, assuming that we still have no
background and that we have gained in our uncertainty of that fact. We still take a
systematic uncertainty of 1 event, assuming that all of our gain in understanding
of systematics comes in the background statistics.

We have a new limit of

2.1 1
BR' = V2 fb 77
g x <2x360+2x360+2x360) 77)
(2.92 + 2.95 + 1.39) fb (78)
— 7.26fb (79)



Now, from Eqn. 51, 0 x BRy = 16.9fb, so that we have an improvement of
16.9/7.26 = 2.34. This is better than the factor of two in integrated luminosity,
so it seems that uncertainty is a good thing! In fact it is not. If we had not
had any uncertainty, we would have had a limit of 2.92 fb which is 7.26/2.92
= 2.49 times worse due to this background. The point is that we are improving
in our understanding of background and in our statistics so we win more than
luminosity would suggest but we are always worse that we could be.

If we use the formula to compute f’, we have

AB,
¢ = N TAS (80)
3
21 +1 (81)
3
= 37 (82)
= 0.97 (83)
For =2 we have
, 1+a
o= f1 e (84)
NG
= 1.17f (85)
= 2.34, (86)

as we have seen. For large statistics, we have f' = f (14 a) = 1.97f.

That is, we eventually gain about twice the integrated luminosity.

To improve these estimates, we would have to look at integrals of experiments
with assumptions of various signal and background levels weighted by Poisson
statistics. The point here was to show that we gain at least as fast as the
luminosity.

6 Conclusions and Future

We have shown that the gain in a limit on ¢ x BR with a factor of f in integrated
luminosity gives a factor of f’ improvement in the sensitivity given by:

1+a
= (87)
Nz
where AB
. 0
“TN, T ASy ®8)

and AB, is the uncertainty in the background, N, is the number of signal
events assumed for Poisson statistics and AS, the systematic uncertainty in the

8



background. For this calculation, it is assumed that there is in actual fact no
background and no signal is observed.

A future computation would involve consideration of the cases with some
number of signal and background events predicted.



